Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 307.763
1.
Oncol Res ; 32(4): 691-702, 2024.
Article En | MEDLINE | ID: mdl-38560565

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Bone Neoplasms , Chlorophyllides , Nanoparticles , Neoplasms , Osteosarcoma , Photochemotherapy , Humans , CD47 Antigen , Cell Line, Tumor , Osteosarcoma/drug therapy , Immunotherapy , Bone Neoplasms/drug therapy , Hydrogen-Ion Concentration , Tumor Microenvironment
2.
Sci Rep ; 14(1): 7767, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565938

XynR is a thermostable alkaline GH10 xylanase, for which we have previously examined the effects of saturation mutagenesis at position 315 on enzyme alkaliphily, and found that at pH 10, the activities of variants could be ordered as follows: T315Q > T315S = T315N > T315H = wild-type XynR (WT) > 15 other variants. In this study, we sought to elucidate the mechanisms underlying the variable activity of these different variants. Crystallographic analysis revealed that the Ca2+ ion near position 315 in WT was absent in the T315Q variant. We accordingly hypothesized that the enhancement of alkaliphily in T315Q, and probably also in the T315H, T315N, and T315S variants, could be ascribed to an activity-stability trade-off associated with a reduction in stability due to the lack of this Ca2+ ion. Consistent with expectations, the alkaline resistance of T315H, T315N, T315Q, and T315S, evaluated through the pH-dependence of stability at 0 mM CaCl2 under alkaline conditions, was found to be lower than that of WT: the residual activity at pH 11 of WT was 78% while those of T315H, T315N, T315Q, and T315S were 0, 9, 0, and 43%, respectively. In addition, the thermostabilities of these four variants, as assessed using the denaturing temperatures (Tm) at 0 mM CaCl2 based on ellipticity at 222 nm in circular dichroism measurements, were lower than that of WT by 2-8 °C. Furthermore, the Tm values of WT and variants at 5 mM CaCl2 were higher than those at 0 mM CaCl2 by 6-11 °C. Collectively, our findings in this study indicate that mutation of the T residue at position 315 of XynR to H, N, Q, and S causes an increase in the alkaliphily of this enzyme, thereby reducing its stability.


Endo-1,4-beta Xylanases , Calcium Chloride , Endo-1,4-beta Xylanases/chemistry , Enzyme Stability , Mutagenesis , Mutation , Temperature , Hydrogen-Ion Concentration
3.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566096

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


6-Phytase , Saccharomycetales , Pichia/metabolism , Methanol/metabolism , 6-Phytase/genetics , 6-Phytase/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Hydrogen-Ion Concentration , Recombinant Proteins/metabolism
4.
Braz Oral Res ; 38: e028, 2024.
Article En | MEDLINE | ID: mdl-38597547

Acidic pH can modify the properties of repair cements. In this study, volumetric change and solubility of the ready-to-use bioceramic repair cement Bio-C Repair (BCR, Angelus, Londrina, PR, Brazil) were evaluated after immersion in phosphate-buffered saline (PBS) (pH 7.0) or butyric acid (pH 4.5). Solubility was determined by the difference in initial and final mass using polyethylene tubes measuring 4 mm high and 6.70 mm in internal diameter that were filled with BCR and immersed in 7.5 mL of PBS or butyric acid for 7 days. The volumetric change was established by using bovine dentin tubes measuring 4 mm long with an internal diameter of 1.5 mm. The dentin tubes were filled with BCR at 37°C for 24 hours. Scanning was performed with micro-computed tomography (micro-CT; SkyScan 1176, Bruker, Kontich, Belgium) with a voxel size of 8.74 µm. Then, the specimens were immersed in 1.5 mL of PBS or butyric acid at and 37 °C for 7 days. After this period, a new micro-CT scan was performed. Bio-C Repair showed greater mass loss after immersion in butyric acid when compared with immersion in PBS (p<0.05). Bio-C Repair showed volumetric loss after immersion in butyric acid and increase in volume after immersion in PBS (p<0.05). The acidic pH influenced the solubility and dimensional stability of the Bio-C Repair bioceramic cement, promoting a higher percentage of solubility and decrease in volumetric values.


Oxides , Root Canal Filling Materials , Animals , Cattle , Solubility , Oxides/chemistry , Calcium Compounds/chemistry , X-Ray Microtomography , Butyric Acid , Materials Testing , Dental Cements/chemistry , Glass Ionomer Cements , Hydrogen-Ion Concentration , Silicates/chemistry , Root Canal Filling Materials/chemistry
5.
Environ Geochem Health ; 46(5): 169, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38592569

Density functional theory (DFT) was employed to elucidate the mechanisms for ozonolysis reaction of p-nitrophenol (PNP) and its anion form aPNP. Thermodynamic data, coupled with Average Local Ionization Energies (ALIE) analysis, reveal that the ortho-positions of the OH/O- groups are the most favorable reaction sites. Moreover, rate constant calculations demonstrate that the O3 attack on the C2-C3 bond is the predominant process in the reaction between neutral PNP and O3. For the aPNP + O3 reaction, the most favorable pathways involve O3 attacking the C1-C2 and C6-C1 bonds. The rate constant for PNP ozonolysis positively correlates with pH, ranging from 5.47 × 108 to 2.86 × 109 M-1 s-1 in the natural aquatic environment. In addition, the formation of hydroxyl radicals in the ozonation process of PNP and the mechanisms of its synergistic reaction of PNP with ozone were investigated. Furthermore, the ozonation and hydroxylation processes involving the intermediate OH-derivatives were both thermodynamically and kinetic analyzed, which illustrate that OH radicals could promote the elimination of PNP. Finally, the toxic of PNP and the main products for fish, daphnia, green algae and rat were assessed. The findings reveal that certain intermediates possess greater toxicity than the original reactant. Consequently, the potential health risks these compounds pose to organisms warrant serious consideration.


Daphnia , Nitrophenols , Ozone , Animals , Rats , Environment , Hydrogen-Ion Concentration
6.
Microb Biotechnol ; 17(4): e14404, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588312

Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.


Acid Phosphatase , Extremophiles , Acid Phosphatase/metabolism , Extremophiles/genetics , Extremophiles/metabolism , Hydrolysis , Amino Acid Sequence , Substrate Specificity , Hydrogen-Ion Concentration
7.
Sci Adv ; 10(16): eadj0268, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640247

Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.


Absorbable Implants , Transducers , Animals , Wireless Technology , Hydrogen-Ion Concentration , Biomarkers
8.
Environ Monit Assess ; 196(5): 461, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642157

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.


Metals, Heavy , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Environmental Monitoring , Chromium/analysis , Water , Thermodynamics , Kinetics , Adsorption
9.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38572830

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Betaproteobacteria , Chlorides , Hydrogen Peroxide , Oxidoreductases , Propionates , Hydrogen Peroxide/chemistry , Catalysis , Protons , Hydrogen-Ion Concentration , Heme/chemistry
10.
J Environ Manage ; 357: 120738, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574710

The pyrolysis of mint stalks and lemon peels was performed to synthesize mint-stalks (MBC) and lemon-peels (LBC) derived biochars for adsorbing methylene blue (MB). The preparation, characterization, and application of MBC in adsorption have not been reported in the literature. MBC showed higher surface area and carbon content than that of LBC. The removal ratios of MB were 87.5% and 60% within 90 min for MBC and LBC, respectively at pH 7, temperature of 30oC, adsorbent dose of 0.5 g/L, and MB concentration of 5 mg/L. The optimal MBC dose was 1 g/L achieving a removal efficiency of 93.6% at pH 7, temperature of 30oC, contact time of 90 min, and initial dye concentration of 5.0 mg/L. The adsorption efficiency decreased from 98.6% to 31.33% by raising the dye concentration from 3.0 mg/L to 30 mg/L. Further, the increase of adsorbent dose to 10 g/L could achieve 94.2%, 90.3%, 87.6%, and 84.1% removal efficiencies of MB in the case of initial concentrations of 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L, respectively. MBC showed high stability in adsorbing MB under five cycles, and the performed analyses after adsorption reaffirmed the stability of MBC. The adsorption mechanism indicated that the adsorption of MB molecules on the biochar's surface was mainly because of the electrostatic interaction, hydrogen bonding, and π-π stacking. Pseudo-second-order and Langmuir models could efficiently describe the adsorption of MB on the prepared biochar. The adsorption process is endothermic and spontaneous based on the adsorption thermodynamics. The proposed adsorption system is promising and can be implemented on a bigger scale. Moreover, the prepared biochar can be implemented in other applications such as photocatalysis, periodate, and persulfate activation-based advanced oxidation processes.


Methylene Blue , Water Pollutants, Chemical , Methylene Blue/chemistry , Adsorption , Hydrogen-Ion Concentration , Charcoal/chemistry , Thermodynamics , Kinetics
11.
J Environ Manage ; 357: 120786, 2024 Apr.
Article En | MEDLINE | ID: mdl-38583386

An innovative task was undertaken to convert ubiquitous and toxic electronic waste, waste toner powder (WTP), into novel adsorbents. Alkaline modification with KOH, NaOH, and NH4OH was employed for the first time to synthesize a series of surface-modified WTP with enhanced dispersibility and adsorption capacity. XRD, XRF, FTIR, and BET analyses confirmed that the prepared KOH-WTP, NaOH-WTP, and NH4OH-WTP were oxygen-functionalized self-doped iron oxide-graphite nanocomposites. The prepared adsorbents were used to remove methylene blue and tetracycline from aqueous solutions. KOH-WTP (0.1 g/100 mL) adsorbed 80% of 10 mg/L methylene blue within 1 h, while 0.1 g/100 mL NH4OH-WTP removed 72% of 10 mg/L tetracycline in 3 h. Exploring surface chemistry by altering solution pH and temperature suggested that hydrogen bonding, electrostatic interactions, π-π electron stacking, and pore filling were plausible adsorption mechanisms. Scanning electron microscopy revealed a diminishing adsorbents porosity after adsorption proving the filling of pores by the adsorbates. KOH-WTP and NH4OH-WTP removed 77% and 61% of methylene blue and tetracycline respectively in the fourth reuse. The adsorption data of methylene blue and tetracycline fitted the Freundlich isotherm model. The maximum adsorption capacities of KOH-WTP and NH4OH-WTP for methylene blue and tetracycline were 59 mg/g and 43 mg/g respectively. The prepared adsorbents were also compared with other adsorbents to assess their performance. The transformation of waste toner powder into magnetically separable oxygen-functionalized WTP with outstanding recyclability and adsorption capacity showcases a significant advancement in sustainable wastewater treatment. This further aligns with the principles of the circular economy through the utilization of toxic e-waste in value-added applications. Additionally, magnetic separation of surface-modified WTP post-treatment can curtail filtration and centrifugation expenses and adsorbent loss during wastewater treatment.


Ferric Compounds , Graphite , Nanocomposites , Water Pollutants, Chemical , Methylene Blue , Adsorption , Powders , Sodium Hydroxide , Tetracycline , Anti-Bacterial Agents , Oxygen , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
12.
Neuroimaging Clin N Am ; 34(2): 271-280, 2024 May.
Article En | MEDLINE | ID: mdl-38604711

Acute stroke imaging plays a vital and time-sensitive role in therapeutic decision-making. Current clinical workflows widely use computed tomography (CT) and magnetic resonance (MR) techniques including CT and MR perfusion to estimate the volume of ischemic penumbra at risk for infarction without acute intervention. The use of imaging techniques aimed toward evaluating the metabolic derangements underlying a developing infarct may provide additional information for differentiating the penumbra from benign oligemia and infarct core. The authors review several modalities of metabolic imaging including PET, hydrogen and oxygen spectroscopy, sodium MRI, and pH-weighted MRI.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Brain Ischemia/pathology , Oxygen , Stroke/therapy , Magnetic Resonance Imaging , Spectrum Analysis , Positron-Emission Tomography/methods , Infarction , Hydrogen-Ion Concentration
13.
Luminescence ; 39(4): e4741, 2024 Apr.
Article En | MEDLINE | ID: mdl-38605268

In the present study, a first validated and green spectrofluorimetric approach for its assessment and evaluation in different matrices was investigated. After using an excitation wavelength of 345 nm, Roxadustat (ROX) demonstrates a highly native fluorescence at an emission of 410 nm. The influences of experimental factors such as pH, diluting solvents, and different organized media were tested, and the most appropriate solvent choice was ethanol. It was confirmed that there was a linear relationship between the concentration of ROX and the relative fluorescence intensity in the range 60.0-1000.0 ng ml-1, with the limit of detection and limit of quantitation, respectively, being 17.0 and 53.0 ng ml-1. The mean recoveries % [±standard deviation (SD), n = 5] for pharmaceutical preparations were 100.11% ± 2.24%, whereas for plasma samples, they were 100.08 ± 1.08% (±SD, n = 5). The results obtained after the application of four greenness criteria, Analytical Eco-Scale metric, NEMI, GAPI, and AGREE metric, confirmed its eco-friendliness. In addition, the whiteness meter (RGB12) confirmed its level of sustainability. The International Council for Harmonisation (ICH) criteria were used to verify the developed method through the study in both spiked plasma samples and content uniformity evaluation. An appropriate standard for various applications in industry and quality control laboratories was developed.


Hematinics , Humans , Limit of Detection , Spectrometry, Fluorescence/methods , Erythropoiesis , Hydrogen-Ion Concentration , Solvents/chemistry , Tablets/chemistry , Isoquinolines
14.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38570313

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Ion Channels , Metals , Nitrites , Transition Elements , Ions , Cations, Divalent , Membranes, Artificial , Hydrogen-Ion Concentration
15.
Anal Chem ; 96(15): 5922-5930, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38575388

Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.


Biphenyl Compounds , G-Quadruplexes , MicroRNAs , Nanoparticles , Neoplasms , Quinaldines , Humans , Sodium Chloride , Neoplasms/diagnostic imaging , Neoplasms/therapy , Mitochondria , Hydrogen-Ion Concentration , Cell Line, Tumor , Tumor Microenvironment
16.
Environ Sci Technol ; 58(15): 6487-6498, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38579165

The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.


Mercury , Animals , Mercury/toxicity , Seawater , Ecosystem , Hydrogen-Ion Concentration , Ocean Acidification , Metals
17.
Mol Biol Cell ; 35(5): ar73, 2024 May 01.
Article En | MEDLINE | ID: mdl-38568799

The SARS-CoV-2 nucleocapsid (N) protein is crucial for virus replication and genome packaging. N protein forms biomolecular condensates both in vitro and in vivo in a process known as liquid-liquid phase separation (LLPS), but the exact factors regulating LLPS of N protein are not fully understood. Here, we show that pH and buffer choice have a profound impact on LLPS of N protein. The degree of phase separation is highly dependent on the pH of the solution, which is correlated with histidine protonation in N protein. Specifically, we demonstrate that protonation of H356 is essential for LLPS in phosphate buffer. Moreover, electrostatic interactions of buffer molecules with specific amino acid residues are able to alter the net charge of N protein, thus influencing its ability to undergo phase separation in the presence of RNA. Overall, these findings reveal that even subtle changes in amino acid protonation or surface charge caused by the pH and buffer system can strongly influence the LLPS behavior, and point to electrostatic interactions as the main driving forces of N protein phase separation. Further, our findings emphasize the importance of these experimental parameters when studying phase separation of biomolecules, especially in the context of viral infections where the intracellular milieu undergoes drastic changes and intracellular pH normally decreases.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , RNA , 60422 , Nucleocapsid , Hydrogen-Ion Concentration , Amino Acids
18.
Biochem Biophys Res Commun ; 710: 149835, 2024 May 28.
Article En | MEDLINE | ID: mdl-38574457

We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.


Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Lysosomes , Hydrogen-Ion Concentration , Drug Combinations
19.
Water Environ Res ; 96(4): e11020, 2024 Apr.
Article En | MEDLINE | ID: mdl-38636954

Antiretroviral drugs (ARVDs) have been extensively employed in health care to improve the quality of life and lifecycle longevity. However, overuse and improper disposal of ARVDs have been recognized as an emerging concern whereby wastewater treatment major recipients. Therefore, in this work, the activated macadamia nutshells (MCNs) were explored as low-cost adsorbents for the removal of ARVDs in wastewater samples. Fourier transform infrared spectroscopy (FTIR), Scanning Electron microscopy (SEM), Brunauer-Emmet-Teller (BET), and Powder X-ray diffraction (PXRD). The highest removal efficiency (R.E) was above 86% for the selected analytes nevirapine, abacavir, and efavirenz. The maximum adsorption capacity of the functionalized MCN adsorbent was 10.79, 27.44, and 38.17 mg/g for nevirapine, abacavir, and efavirenz for HCl-modified adsorbent. In contrast, NaOH modified had adsorption capacities of 13.67, 14.25, and 20.79 mg/g. The FTIR showed distinct functional groups OH and CO, which facilitate the removal of selected ARVDs. From studying kinetics parameters, the pseudo-second-order (R2 = 0.990-0.996) was more dominant than the pseudo-first-order (R2 = 0.872-0.994). The experimental data was most fitted in the Freundlich model with (R2 close to 1). The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. The study indicated that MCNs are an eco-friendly, low-cost, and effective adsorbent for the removal of nevirapine, abacavir, and efavirenz. PRACTITIONER POINTS: Modification macadamia nutshell with HCl and NaOH improved physio-chemical properties that yielded high removal efficiency compared with raw macadamia nutshells. Modification of macadamia by HCl showed high removal efficiency, which could be attributed to high interaction such as H-bonding that improves adsorption. The macadamia nutshell as an adsorbent showed so much robustness with regeneration studies yielding to about 69.64% of selected compounds.


Alkynes , Benzoxazines , Cyclopropanes , Dideoxyadenosine/analogs & derivatives , HIV Infections , Water Pollutants, Chemical , Wastewater , Macadamia , Adsorption , Nevirapine , Quality of Life , Sodium Hydroxide , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistry , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
20.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565815

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Antioxidants , Cadmium , Escherichia , Cadmium/toxicity , Hydrogen-Ion Concentration , Environmental Monitoring , Flocculation
...